
template<class T = ResaCON>
class Presentation
{

 static const char *author = “Pplux” ;

};

templates?

Ventajas:

blah

blah

Problemas:

blah blah

slack no lleva razón blah blah

Especialización
struct NullType
{
};

template<int i, class T1, class T2, class T3>
struct select
{
 typedef NullType Result;
};

Especialización
struct NullType
{
};

template<int i, class T1, class T2, class T3>
struct select
{
 typedef NullType Result;
};

Especialización
struct NullType
{
};

template<int i, class T1, class T2, class T3>
struct select
{
 typedef NullType Result;
};

Especialización (...Parcial !!!)

template<class T1, class T2, class T3>
struct select<0,T1,T2,T3>
{
 typedef T1 Result;
};

template<class T1, class T2, class T3>
struct select<1,T1,T2,T3>
{
 typedef T2 Result;
};

template<class T1, class T2, class T3>
struct select<2,T1,T2,T3>
{
 typedef T3 Result;
};

Especialización (...Parcial !!!)

template<class T1, class T2, class T3>
struct select<0,T1,T2,T3>
{
 typedef T1 Result;
};

template<class T1, class T2, class T3>
struct select<1,T1,T2,T3>
{
 typedef T2 Result;
};

template<class T1, class T2, class T3>
struct select<2,T1,T2,T3>
{
 typedef T3 Result;
};

Especialización (...Parcial !!!)

template<class T1, class T2, class T3>
struct select<0,T1,T2,T3>
{
 typedef T1 Result;
};

template<class T1, class T2, class T3>
struct select<1,T1,T2,T3>
{
 typedef T2 Result;
};

template<class T1, class T2, class T3>
struct select<2,T1,T2,T3>
{
 typedef T3 Result;
};

Especialización (...Parcial !!!)

template<class T1, class T2, class T3>
struct select<0,T1,T2,T3>
{
 typedef T1 Result;
};

template<class T1, class T2, class T3>
struct select<1,T1,T2,T3>
{
 typedef T2 Result;
};

template<class T1, class T2, class T3>
struct select<2,T1,T2,T3>
{
 typedef T3 Result;
};

Especialización (...Parcial !!!)

template<class T1, class T2, class T3>
struct select<0,T1,T2,T3>
{
 typedef T1 Result;
};

template<class T1, class T2, class T3>
struct select<1,T1,T2,T3>
{
 typedef T2 Result;
};

template<class T1, class T2, class T3>
struct select<2,T1,T2,T3>
{
 typedef T3 Result;
};

Especialización (...¿?...)

int main()
{
 select<2,float,float,int>::Result obj = 2;
}

Especialización (cálculo)

template<unsigned int D>
struct fib
{
 enum { value = fib<D-1>::value + fib<D-2>::value };
};

template<>
struct fib<0>
{
 enum { value = 0 };
};

template<>
struct fib<1>
{
 enum { value = 1 };
};

Especialización (cálculo)

template<unsigned int D>
struct fib
{
 enum { value = fib<D-1>::value + fib<D-2>::value };
};

template<>
struct fib<0>
{
 enum { value = 0 };
};

template<>
struct fib<1>
{
 enum { value = 1 };
};

Especialización (cálculo)

template<unsigned int D>
struct fib
{
 enum { value = fib<D-1>::value + fib<D-2>::value };
};

template<>
struct fib<0>
{
 enum { value = 0 };
};

template<>
struct fib<1>
{
 enum { value = 1 };
};

Especialización (cálculo)

template<unsigned int D>
struct fib
{
 enum { value = fib<D-1>::value + fib<D-2>::value };
};

template<>
struct fib<0>
{
 enum { value = 0 };
};

template<>
struct fib<1>
{
 enum { value = 1 };
};

Especialización (cálculo)

int main()
{
 std::cout << fib<8>::value << std::endl;

 char a[fib<15>::value];
 return 0;
}

Especialización (cálculo)

int main()
{
 std::cout << fib<8>::value << std::endl;

 char a[fib<15>::value];
 return 0;
}

Constante
(tiempo de Compilación)

Especialización (cálculo)

int main()
{
 std::cout << fib<8>::value << std::endl;

 char a[fib<15>::value];
 return 0;
}

Constante
(tiempo de Compilación)

Más usos de las constantes

template<class T, unsigned int D>
struct vec
{
 T& operator[](unsigned int p)
 {
 return data[p];
 }

 T data[D];
};

int main()
{
 vec<float,2> v2;
 vec<float,3> v3;

 return 0;
}

Más usos de las constantes

template<class T, unsigned int D>
struct vec
{
...
 vec<T,D-1> reduce()
 {
 vec<T,D-1> r;
 for(unsigned int i = 0; i < D-1; ++i)
 {
 r[i] = data[i]/data[D-1];
 }
 return r;
 }
...
};

Más usos de las constantes

template<class T, unsigned int D>
struct vec
{
...
 vec<T,D-1> reduce()
 {
 vec<T,D-1> r;
 for(unsigned int i = 0; i < D-1; ++i)
 {
 r[i] = data[i]/data[D-1];
 }
 return r;
 }
...
};

Más usos de las constantes

template<class T, unsigned int D>
struct vec
{
...
 vec() {}
 vec(T a) { data[0] = a; }
 vec(T a, T b) { data[0] = a; data[1] = b; }
 vec(T a, T b, T c) { data[0] = a; data[1] = b; data[2] = c; }
...
};

Más usos de las constantes

template<class T, unsigned int D>
struct vec
{
...
 vec() {}
 vec(T a) { data[0] = a; }
 vec(T a, T b) { data[0] = a; data[1] = b; }
 vec(T a, T b, T c) { data[0] = a; data[1] = b; data[2] = c; }
...
};

Más usos de las constantes

template<int n>
struct check_vector_size
{
 check_vector_size() {}
 char b[n-1];
};
template<class T, unsigned int D>
struct vec
{
 vec<T,D-1> reduce()
 {
 check_vector_size<D-1>();
 vec<T,D-1> r;

 }
 vec() {}
 vec(T a) { check_vector_size<D>(); data[0] = a; }
 vec(T a, T b) { check_vector_size<D-1>(); data[0] = a; data[1] = b; }
 vec(T a, T b, T c) { check_vector_size<D-2>(); data[0] = a; data[1] = b; data[2] = c; }
...

};

Más usos de las constantes

template<int n>
struct check_vector_size
{
 check_vector_size() {}
 char b[n-1];
};
template<class T, unsigned int D>
struct vec
{
 vec<T,D-1> reduce()
 {
 check_vector_size<D-1>();
 vec<T,D-1> r;

 }
 vec() {}
 vec(T a) { check_vector_size<D>(); data[0] = a; }
 vec(T a, T b) { check_vector_size<D-1>(); data[0] = a; data[1] = b; }
 vec(T a, T b, T c) { check_vector_size<D-2>(); data[0] = a; data[1] = b; data[2] = c; }
...

};

Más usos de las constantes

template<int n>
struct check_vector_size
{
 check_vector_size() {}
 char b[n-1];
};
template<class T, unsigned int D>
struct vec
{
 vec<T,D-1> reduce()
 {
 check_vector_size<D-1>();
 vec<T,D-1> r;

 }
 vec() {}
 vec(T a) { check_vector_size<D>(); data[0] = a; }
 vec(T a, T b) { check_vector_size<D-1>(); data[0] = a; data[1] = b; }
 vec(T a, T b, T c) { check_vector_size<D-2>(); data[0] = a; data[1] = b; data[2] = c; }
...

};

Inválido si
n == 0

Más usos de las constantes

template<int n>
struct check_vector_size
{
 check_vector_size() {}
 char b[n-1];
};
template<class T, unsigned int D>
struct vec
{
 vec<T,D-1> reduce()
 {
 check_vector_size<D-1>();
 vec<T,D-1> r;

 }
 vec() {}
 vec(T a) { check_vector_size<D>(); data[0] = a; }
 vec(T a, T b) { check_vector_size<D-1>(); data[0] = a; data[1] = b; }
 vec(T a, T b, T c) { check_vector_size<D-2>(); data[0] = a; data[1] = b; data[2] = c; }
...

};

Inválido si
n == 0

Check en tiempo
de Compilación

sizeof

sizeof es realmente potente, se puede aplicar a cualquier
expresión, sin importar lo compleja que esta sea, sizeof devolverá
el tamaño de esta sin necesidad de llegar a evaluar la expresión
en tiempo de ejecución.

Esto significa que sizeof tiene presente la sobrecarga, la
especial ización de planti l las, reglas de conversión …
absolutamente todo lo que pueda aparecer en una expresión de
C++ .

En realidad, sizeof es capaz de deducir el tipo de una expresión;
desechando la expresión pero devolviendo su tamaño.

sizeof

template <class A, class B>
class Convert
{
 typedef char S_True;
 class S_False { char dummy[2]; };
 static A CreateInstance();
 static S_True Test(B);
 static S_False Test(...);

public:
 enum {
 exists = (sizeof(Test(CreateInstance())) == sizeof
(S_True))
 };
};

sizeof

template <class A, class B>
class Convert
{
 typedef char S_True;
 class S_False { char dummy[2]; };
 static A CreateInstance();
 static S_True Test(B);
 static S_False Test(...);

public:
 enum {
 exists = (sizeof(Test(CreateInstance())) == sizeof
(S_True))
 };
};

sizeof

template <class A, class B>
class Convert
{
 typedef char S_True;
 class S_False { char dummy[2]; };
 static A CreateInstance();
 static S_True Test(B);
 static S_False Test(...);

public:
 enum {
 exists = (sizeof(Test(CreateInstance())) == sizeof
(S_True))
 };
};

sizeof

int main()
{
 std::cout << Convert<Liso,People>::exists << std::endl;

 std::cout << Convert<float,int>::exists << std::endl;
}

sizeof

int main()
{
 std::cout << Convert<Liso,People>::exists << std::endl;

 std::cout << Convert<float,int>::exists << std::endl;
}

static S_True Test(B);
static S_False Test(...);

sizeof

int main()
{
 std::cout << Convert<Liso,People>::exists << std::endl;

 std::cout << Convert<float,int>::exists << std::endl;
}

static S_True Test(B);
static S_False Test(...);

Ejemplo: Signals

int main()
{
 Sender s;
 Receiver r;
 connect(&s, &Sender::sendFloats, &r, &Receiver::onSignal);
 s.fire();
 return 0;
}

class Sender
{
public:
 signal<float, float> sendFloats;
 signal<int> sendInt;

 void fire()
 {
 sendFloats(2.0,3.0);
 sendInt(5);
 }
};

class Receiver
{
public:
 void onSignal(float a, float b)
 {...}
 void onSignal(int i)
 {...}

};

Ejemplo: Signals

template<class T1 = NullType , class T2 = NullType, class T3 = NullType>
class signal : private BaseSignal<T1,T2,T3>
{
...
};

template<class T1, class T2>
class signal<T1,T2, NullType> : private BaseSignal<T1,T2>
{
public:
 void operator()(T1 a,T2 b) { BaseSignal<T1,T2>::operator()(a,b); }

 template<class C>
 void connect(C *a, typename slot<C,T1,T2>::Prototipe a_m)
 {
 BaseSignal<T1,T2>::_slot = new slot<C,T1,T2>(a,a_m);
 }
};

Ejemplo: Signals

template<class T1 = NullType , class T2 = NullType, class T3 = NullType>
class signal : private BaseSignal<T1,T2,T3>
{
...
};

template<class T1, class T2>
class signal<T1,T2, NullType> : private BaseSignal<T1,T2>
{
public:
 void operator()(T1 a,T2 b) { BaseSignal<T1,T2>::operator()(a,b); }

 template<class C>
 void connect(C *a, typename slot<C,T1,T2>::Prototipe a_m)
 {
 BaseSignal<T1,T2>::_slot = new slot<C,T1,T2>(a,a_m);
 }
};

Ejemplo: Signals

template<class C, class T1 = NullType, class T2 = NullType, class T3 = NullType>
struct slot : public BaseSlot<T1,T2,T3>
{
 typedef void (C::*Prototipe)(T1,T2,T3);
...
};

template<class C, class T1, class T2>
struct slot<C,T1,T2,NullType> : public BaseSlot<T1,T2>
{
 typedef void (C::*Prototipe)(T1,T2);

 slot(C *obj, Prototipe m) : _obj(obj), _m(m) {}
 void operator()(T1 a,T2 b) { (_obj->*_m)(a,b); }
private:
 C *_obj;
 Prototipe _m;
};

Ejemplo: Signals

template<class T1, class T2, class S, class R>
void connect_bad(

S *sender,
Signal<T1,T2> S::*s_sig,
R *receiver,
void (R::*r_Slot)(T1,T2)) {...}

Ejemplo: Signals

template<class T1, class T2, class S, class R>
void connect_bad(

S *sender,
Signal<T1,T2> S::*s_sig,
R *receiver,
void (R::*r_Slot)(T1,T2)) {...}

No generaliza en
número

Ejemplo: Signals

template<class T1, class T2, class T3, class S, class R>
void connect(

S *sender,
Signal<T1,T2,T3> S::*s_sig,
R *receiver, typename Slot<R, T1,T2,T3>::Prototipe r_Slot)

{
 (sender->*s_sig).connect(receiver, r_Slot);
}

Ejemplo: Signals

template<class T1, class T2, class T3, class S, class R>
void connect(

S *sender,
Signal<T1,T2,T3> S::*s_sig,
R *receiver, typename Slot<R, T1,T2,T3>::Prototipe r_Slot)

{
 (sender->*s_sig).connect(receiver, r_Slot);
}

Ejemplo: Signals

template<class T1, class T2, class T3, class S, class R>
void connect(

S *sender,
Signal<T1,T2,T3> S::*s_sig,
R *receiver, typename Slot<R, T1,T2,T3>::Prototipe r_Slot)

{
 (sender->*s_sig).connect(receiver, r_Slot);
}

template<class C, class T1, class T2>
struct slot<C,T1,T2,NullType> : public BaseSlot<T1,T2>
{
 typedef void (C::*Prototipe)(T1,T2);
};

Ejemplo: Signals

template<class T1, class T2, class T3, class S, class R>
void connect(

S *sender,
Signal<T1,T2,T3> S::*s_sig,
R *receiver, typename Slot<R, T1,T2,T3>::Prototipe r_Slot)

{
 (sender->*s_sig).connect(receiver, r_Slot);
}

template<class C, class T1, class T2>
struct slot<C,T1,T2,NullType> : public BaseSlot<T1,T2>
{
 typedef void (C::*Prototipe)(T1,T2);
};

connect(&s, &Sender::sendFloats, &r, &Receiver::onSignal);

Otros Ejemplos...

SLB::Class< SFH, SLB::Instance::NoCopy >("Unit_005::SFH")
 .inherits<SLB::Script>()
 .constructor()
 .set("doString", &SFH::doString)
 .set("calc", &SFH::calc)
 .hybrid()
;

SLB::Class<Animal, SLB::Instance::NoCopy >("Unit_004::Animal")
 .set("makeSound", &Animal::makeSound)
;
SLB::Class<Duck>("Unit_004::Duck")
 .constructor<bool>()
 .set("canFly", &Duck::canFly)
 .inherits<Animal>()
;
SLB::Class<Dog>("Unit_004::Dog")
 .constructor<bool>()
 .set("bites", &Dog::bites)
 .inherits<Animal>()
;

Otros Ejemplos...

template<class V, bool N>
inline VertexAttribArray<V,N>::VertexAttribArray()
: ArrayBase(V::Size, C_to_GL<typename V::Type>::value,N)
{}

Otros Ejemplos...

template<class V, bool N>
inline VertexAttribArray<V,N>::VertexAttribArray()
: ArrayBase(V::Size, C_to_GL<typename V::Type>::value,N)
{}

template<class T>
struct C_to_GL
{
 //Default...
 enum { value = -1 };
};

template<>
struct C_to_GL<float>
{
 enum { value = GL_FLOAT };
};

template<>
struct C_to_GL<double>
{
 enum { value = GL_DOUBLE};
};

Otros Ejemplos...

template<class V, bool N>
inline VertexAttribArray<V,N>::VertexAttribArray()
: ArrayBase(V::Size, C_to_GL<typename V::Type>::value,N)
{}

template<class T>
struct C_to_GL
{
 //Default...
 enum { value = -1 };
};

template<>
struct C_to_GL<float>
{
 enum { value = GL_FLOAT };
};

template<>
struct C_to_GL<double>
{
 enum { value = GL_DOUBLE};
};

template<class T, size_t D>
class Vec: public Vec<T, D-1>
{
public:
 enum { Size = D };
 typedef T Type;
...

template<class T = ResaCON>
class Preguntas
{
	 	 /* TODO */ /* HACK */ /*WTF!*/

};

